
24

SPONSORED FEATURE

Data science has become pervasive throughout the financial sector, and 
Python is almost always a part of the equation. One might argue that 
the symbiosis of data science and Python has led to significant growth of 
data analysis in finance, ranging from fraud detection, and market and risk 
analysis, to investment decision-making and smart beta. However, as with 
any technological trend, it is important to understand the limitations and risks 
before jumping on the bandwagon.

So, why is there so much buzz around Python? Is it really justified? And, more 
importantly, what are the risks to consider when working with this popular 
programming language?

Why has Python become so popular?
Versatile and easy to use 
Python’s ease of use is no accident. Frustrated by the shortcomings of other 
programming languages, in late 1989 Guido van Rossum set out to create 
one that would be easy to read and have maximum flexibility. Python’s syntax 
is so easy to learn that even those who’ve never coded can follow the logic. 
This allows users to write code faster and with fewer errors. 

Extensive ecosystem with powerful libraries
Python has an extensive selection of libraries, which can save time and shorten 
the development cycle. Mathematics and statistics libraries such as NumPy and 
SciPy are very well suited to financial analytics, and when users add tools such as 
Jupyter notebooks for interactive development, Pandas for managing dataframes 
and Plotly for user interface (UI) and visualisation, Python becomes a formidable 
data science and analytics tool. In particular, Jupyter is now becoming a highly 
productive environment for collaboration and sharing ideas across teams on a 
web-based platform.

This ecosystem is a significant factor in the huge productivity gains 
organisations see with Python. Standard libraries and tools enable quants to 
focus on creating a competitive advantage, rather than spending resources 
reinventing basic functionality. 

Enhances collaboration, efficiency and productivity
The large pool of resources available to those using Python makes getting up 
and running easy, meaning many can build their own custom analytics and 
bespoke reports without needing to go through an internal development team or 
wait for a software vendor’s next release. This speed in customising functionality 
improves agility within the business, and it can also be used to quickly prototype 
new workflows and reports without the need for costly development projects. 

The ease of use and setup means a range of roles within organisations 
are using Python rather than other programming languages, so it is not only 
traditional developers that have a say in the development process. With Python, 
quants, traders and portfolio managers can get involved. This leads to increased 
collaboration and allows for rapid development timeframes, saving time and cost.

Risks with Python 
While there are many good reasons to use Python, it has limitations. Even some 
of the benefits can lead to risks if not managed carefully. 

Easy to get going, but hard to scale
Because Python is so easy to use, individuals will often create applications 
without first having a proper plan in place for managing key areas. However, 
without the right plans, technologies and frameworks in place, there is a risk of a 
Python project collapsing under its own weight. For example, when using Python 
in a large organisation it can be difficult to maintain control over the code, the 
different versions of data and models, and who has access to the applications. 

Caveat emptor
It is also worth bearing in mind that the libraries available with Python are open 
source, and users must be careful about which ones they use. Unlike commercial 
software – which can be expensive – there is no central management of the 

Python – Is the buzz justified?
Python is rapidly becoming the world’s most popular programming language and its versatility and ease of use has enabled it to 
achieve widespread adoption in finance, becoming the multipurpose tool of choice for quantitative analysts and other financial 
technologists. By Christian Kahl, director and head of client services at Fincad

risk.net November 2018

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11  Java

St
ac

k 
O

ve
rfl

ow
 q

ue
st

io
ns

 th
at

 m
on

th
 (%

)

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

 Python
 C++
 R

1  Python versus other programming languages

Source: Stack Overflow

www.fincad.com


25risk.net

code or support, so it is important users choose libraries backed by a robust 
community of users. In the realm of data science, NumPy and SciPy are examples 
of reliable libraries and there are many others. Such libraries are vetted, highly 
regarded and widely used. Thus, there are more eyes on the code and users have 
the ability to make fixes as needed.

Upgrades
Python is commonly used for extensibility and it can be standard to have lots 
of different code embedded within workflows for this purpose. Unfortunately, 
a lack of control when implementating Python code can lead to different 
libraries and functions being used. This can present problems when it comes 
to upgrades, leading to breaks in code and subsequent systems failing. For 
example, problems can occur when using Python 2 versus Python 3 in different 

parts of an organisation, and then upgrading part of its technology stack when it 
is incompatible with older versions. 

When upgrades are not managed properly, it can lead to downtime and 
additional costs. However, this risk can be mitigated by having strong processes 
and controls around the release of new code and how upgrades are managed. 

Speed and robustness
There is a common view that Python is not as fast in terms of runtime speed as 
compiled languages, such as C++. Typically, Python would not be used for the 
same tasks as C++; it is best used for integrations, extending frameworks or 
running on-the-fly reporting and calculations where rapid speed is not of primary 
importance. Equally, the inherent flexibility and openness of Python can be 
viewed as less robust.

The key here is that Python is easily used in conjunction with other languages, 
so in cases where users need to use a more structured language, they can still 
use Python to extend their development efforts. This can be done effectively if 
users have a robust technology stack and framework, which will enable them to 
retain the benefits of using C++ for critical code, while scripting around it using 
the flexibility of Python.

Best practices for using Python 
One of the dangers of implementing new technology is not fully understanding 
where potential risks lie, and adopting Python within an internal framework is 
no different. It is essential to think holistically about where Python is used and 
how it is deployed to avoid operational risks. Here are a few key suggestions to 
mitigate these risks:
 •  Implement controls for code releases and ensure any code written is using

vetted libraries and being used consistently throughout the organisation. 
 •  Manage upgrades carefully to ensure workflows don’t break down

when released.
 •  Use Python to extend and enhance larger systems rather than building

systems from scratch. This can diminish the margin for error and reduce overall
operational risk. 

 •  Use a centralised system with a Python interface that allows those that want
to use Python for customisation and analysis to do so, but that can also allow
controls to be put in place quickly and easily. 

 •  To maximise collaboration, ensure any development efforts – such as payouts, 
reporting techniques and scripts – are centralised and available throughout the
organisation instead of on staff members’ machines.

Conclusion
Python is quick and easy to pick up and therefore has huge benefits in 
collaboration and time saving. From this perspective, it is very cost-effective. 
Python allows companies to be more dynamic and agile, eliminating the need 
to wait for long periods as developers build a new UI or vendors build out 
workflow. There is, however, a trade-off between the robustness of internal 
systems and the flexibility of using Python. The open and free libraries have 
obvious benefits, but can present risks if the versions are not controlled and 
upgrades are not handled properly. 

Using Python can assist developers and quant traders in easily building 
out custom applications, reports and analysis that drive better investment 
and risk decisions. It is therefore worth investing in systems that enable 
Python to be used for extensibility and customisation, and provide centralised 
modelling, version controls for managing data and instil consistency across the 
organisation. This approach will free quants and developers from getting bogged 
down in merely maintaining infrastructure, and give them more time to focus on 
adding value to their business.

2  Example of a Python trade script for defining a targeted 
accrual redemption note

Christian Kahl, Director and head of 
client services, Fincad

Christian Kahl is responsible for all client-facing 
quantitative topics and resources globally. 
He is recognised for his in-depth knowledge 
of stochastic volatility modelling and high-
performance computing, and has more than 
10 years’ experience implementing models 
in cross-asset front-office pricing libraries for 
both sell-side and buy-side institutions. Before 

joining Fincad, Christian was the deputy head of financial engineering in 
the equity market and commodity department at Commerzbank. 

E: c.kahl@fincad.com

The author

 Using Python within an established framework can eliminate the need for quants to 
learn a new proprietary language for trade scripting. If using a centralised risk and 
valuation system that allows for this functionality, these new trade structures can be 
quickly distributed to the entire organisation.




